1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| import matplotlib.pyplot as plt import numpy as np
data = [[ 66386, 174296, 75131, 577908, 32015], [ 58230, 381139, 78045, 99308, 160454], [ 89135, 80552, 152558, 497981, 603535], [ 78415, 81858, 150656, 193263, 69638], [139361, 331509, 343164, 781380, 52269]]
columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail') rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]
values = np.arange(0, 2500, 500) value_increment = 1000
colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows))) n_rows = len(data)
index = np.arange(len(columns)) + 0.3 bar_width = 0.4
y_offset = np.zeros(len(columns))
cell_text = [] for row in range(n_rows): plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row]) y_offset = y_offset + data[row] cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset])
colors = colors[::-1] cell_text.reverse()
the_table = plt.table(cellText=cell_text, rowLabels=rows, rowColours=colors, colLabels=columns, loc='bottom')
plt.subplots_adjust(left=0.2, bottom=0.2)
plt.ylabel(f"Loss in ${value_increment}'s") plt.yticks(values * value_increment, ['%d' % val for val in values]) plt.xticks([]) plt.title('Loss by Disaster')
plt.show()
|